colab

计算 weighted sum 的方式:

# using matrix multiply
wei = torch.tril(torch.ones(T, T))
wei = wei / wei.sum(1, keepdim=True)
out = wei @ x
# using softmax
tril = torch.tril(torch.ones(T, T))
wei = torch.zeros((T,T))
wei = wei.masked_fill(tril == 0, float('-inf'))
wei = F.softmax(wei, dim=-1)
out = wei @ x

Notes:

  • Attention is a communication mechanism. Can be seen as nodes in a directed graph looking at each other and aggregating information with a weighted sum from all nodes that point to them, with data-dependent weights.
  • There is no notion of space. Attention simply acts over a set of vectors. This is why we need to positionally encode tokens.
  • Each example across batch dimension is of course processed completely independently and never “talk” to each other
  • In an “encoder” attention block just delete the single line that does masking with tril, allowing all tokens to communicate. This block here is called a “decoder” attention block because it has triangular masking, and is usually used in autoregressive settings, like language modeling.
  • “self-attention” just means that the keys and values are produced from the same source as queries. In “cross-attention”, the queries still get produced from x, but the keys and values come from some other, external source (e.g. an encoder module)
  • “Scaled” attention additional divides wei by 1/sqrt(head_size). This makes it so when input Q,K are unit variance, wei will be unit variance too and Softmax will stay diffuse and not saturate too much.

attention是多节点communication,feedforward是节点自己computation

pre-norm formulation:现今transformer比起论文的改变是把LayerNorm移到attention和feedforward之前进行。

参考